

产品优势 Features

◆ 宽带: 9KHz~8000MHz

◆ 衰减范围: 31.75dB, 步进0.25dB

◆ 高功率: IP0.1dB 31dBm

◆ 高线性: IIP3 50dBm

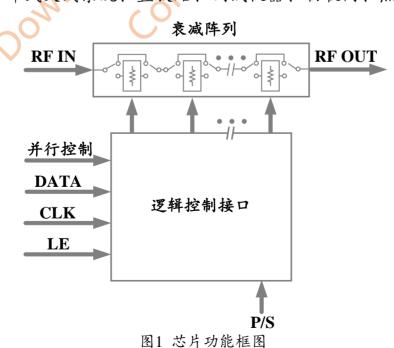
◆ 高精度: ±(0.25+2.5%xATT)@4GHz

◆ 防静电: ESD 3000V@HBM

◆ 宽温工作: -40~+105°C

◆ 小尺寸: QFN 4x4mm² 24脚塑料封装

◆支持多种控制方式: 串口、并口


◆切换过程无过冲

典型应用 Applications

- ◆ 小基站(Small Cell)
- ◆分布式天线系统(DAS)
- ◆ 直放站
- ◆ 测试仪器
- ◆物联网
- ◆ 点对点通信

产品描述 Description

ARW637是一款基于硅工艺设计,针对8GHz以下应用的宽带、高线性度、高精度、快速切换的低成本双向7位数控衰减器(DSA),具有串行、直接并行、锁存并行多种衰减态配置功能,输入功率0.1dB压缩点可达31dBm,插损在6GHz以内小于2.8dB,切换时间小于275ns,衰减范围最大可达31.75dB,步进0.25dB、0.5dB及1dB可选。QFN 4x4小尺寸表贴塑料封装,引脚兼容PE43711、HMC1119,广泛用于小基站、分布式天线系统、直放站、测试仪器、物联网、点对点通信等。

Pre v0.2 Doc20230103

交直流特性 AC/DC Electronic Characteristics

表 1 典型值测得的工作条件: 芯片外壳温度 25° C, 供电电压 $V_{DD}=3.3$ V, 50Ω 测试系统, 另有说明除外。

参数/符号	测试条件/备注	最小值	典型值	最大值	单位	
工作频率 Frequency		0.009		8000	MHz	
h 15 1/2 mm	0.25dB步进	0		31.75		
衰减范围 Attenuation range	0.5dB步进	0		31.5	dB	
Attenuation range	1dB步进	0		× 31		
	9KHz~1GHz		1.4	1.6		
	1~2GHz		1.6	1.9		
插入损耗 Insertion loss RF1 to RF2	2~4GHz		1.9	2.4	dB	
Ki i to Ki 2	4~6GHz		2.4	2.8		
	6~8GHz	70	2.8	3.2		
	0.25dB步进		X		dB	
	9KHz~2.2GHz		1/0	$\pm (0.2+1.5\% \text{xA})$	TT)	
	2.2~3GHz	Ç	0,	$\pm (0.2+2.0\% \text{xA})$	TT)	
	3~5GHz	-6		$\pm (0.25 + 2.5\% x)$	ATT)	
	0.5dB步进	10,			dB	
衰减误差	9KHz~2.2GHz	$\pm (0.2+1.5\% \text{ xATT})$				
Attenuation error	2.2~3GHz	$\pm (0.2+2.0\% \text{xATT})$				
	3~6GHz	$\pm (0.25 + 2.5\% \text{ xATT})$				
No.	1dB步进				dB	
00	9KHz~2.2GHz			$\pm (0.2+1.5\% \text{xATT})$		
	2.2~3GHz			$\pm (0.2+2.0\% \text{xATT})$		
	3~8GHz			$\pm (0.25 + 2.5\% \text{xATT})$		
回波损耗 Return loss	9KHz~8GHz		15		dB	
What to to Dalating whose	所有态,9KHz~4GHz		30		deg	
附加相移 Relative phase	所有态, 4~8GHz		50		deg	
输入 0.1dB 压缩点 IP0.1dB ¹⁾	1GHz		31		dBm	
输入三阶截点功率 IIP3	900MHz 双音功率20dBm, 间隔 20MHz		50		dBm	
切换时间 Tsw	CTRL 的 50% 到 RF 的 90% 或10%		275		ns	
切换过冲	2GHz, <20dBm		0.3		dB	
杂散 Spurious			-120		dBm	

备注: 1) 射频输入 0.1dB 压缩点为线性度指标, 射频输入功率建议工作范围请参考表 2

◆ 切换频率

ARW637最大切换频率为25KHz。切换频率用来描述切换状态之间的时间间隔。 切换时间用来描述从控制信号到达最终值50%时开始到输出信号达到目标值10% 或90%时为止两者之间的时间间隔。

◆ 状态过渡

ARW637有一个特殊的结构用来保护状态切换时安全的过渡。通过优化内部控制时序,可以保证当衰减态切换时,不出现正向过冲。

建议工作范围 Recommended Operating Ranges

表 2

N 2					\smile
参数/符号	测试条件/备注	最小值	典型值	最大值	单位
电源电压 V _{DD}		3.0	3.3	5	V
电源电流 I _{DD}		, ₍ C	0.23	1/0.	mA
控制电压高电平	C16~C0.25	1.2	3.3	3.6	V
控制电压低电平	C16~C0.25	-0.2	0	0.6	V
射频输入功率 P _{IN} 1)	常温,连续波	•	76.	24	dBm
工作温度 TOP	芯片外壳温度	-40	0	+105	°C

绝对极限值 Absolute Maximum Rating

表 3

参数/符号	测试条件/备注	极限值
电源电压 V _{DD}		-0.3~+5.5 V
控制电压范围		-0.3~+3.6 V
射频输入功率 P _{IN} 1)		26dBm @25°C
存储温度范围		-60~+150°C
芯片沟道结温最大值	工作寿命≥10年	+125°C
防静电等级		Class2 3000V@HBM Class1 1000V@CDM

备注: 1) 射频输入功率的频率范围 50MHz 到 8GHz

程控选项 Programming Option

ARW637可由并行或串行两种模式控制。当P/S接低时并行控制, 当P/S接高时 串行控制。

并行模式

并行控制接口由7位公用的CMOS电平控制线组成,表4是并行控制信号与衰减态的对应表。

表 4 并行控制逻辑真值表

表4并	·行控制i	罗辑真值	表				~0
C16	C8	C4	C2	C1	C0.5	C0.25	衰减态
0	0	0	0	0	0	0	参考态
0	0	0	0	0	0	1	0.25dB
0	0	0	0	0	1	0	0.5dB
0	0	0	0	1	0	0	1dB
0	0	0	1	0	0	0	2dB
0	0	1	0	0	0	0	4dB
0	1	0	0	0	0	0	8dB
1	0	0	0	0	0	0	16dB
1	1	1	1	1	1	1	31.75dB

并行控制模式分直接并行和锁存并行模式。

直接并行模式时,LE保持为高电平,改变控制位的值直接改变衰减态。非常适合通过开关 或者跳线手动控制衰减量。

锁存并行模式时,在LE保持为低时改变衰减控制位,然后使LE先拉高再拉低,形成一个脉 冲,从而锁住最新的衰减态。图2描述了锁存并行模式的时序图,表5是相关的交流特性。

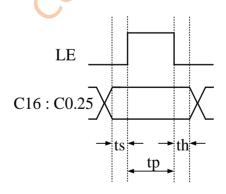


图 2 锁存并行时序图

表 5 锁存并行模式接口交流特性

符号	说明	最小值	最大值	单位
ts	并行数据建立时间	10		ns
th	并行数据保持时间	10		ns
tp	LE最小脉冲宽度	30		ns

◆ 串行模式

工作在串行控制模式时, 所有并行控制输入管脚接地。

串行接口由 8 位串行输入并行输出的移位寄存器后接透明锁存器构成。数控衰减器由这 8 位串行控制字控制, 图 3 为串行控制时序图, 表 6 是串行接口交流特性。

串行接口由公用的三个 CMOS 信号 DATA、CLK、LE 控制, DATA 和 CLK 输入确保数据串行写入移位寄存器,串行数据首先被锁存在 LSB 位。当 LE 为低电平时,加载移位寄存器内数据,以保证当数据串行输入时衰减量不变。然后 LE 电平拉高并再次降低时,最新数据被锁存进数控衰减器。表 8 是衰减控制字与衰减态的对应表。

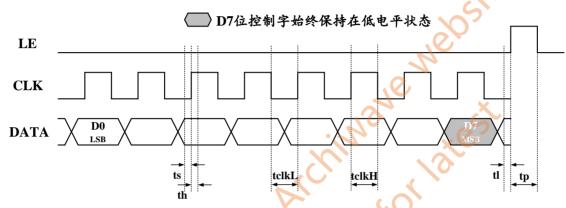


图 3 串行控制时序图

表 6 串行模式接口交流特性

	• • • • • • • • • • • • • • • • • • • •			
符号	说明	最小值	最大值	单位
fclk	串行时钟频率	0	10	MHz
tclkH	串行时钟为高时间	30		ns
tclkL	串行时钟为低时间	30		ns
ts	串行数据建立时间	10		ns
th	串行数据保持时间	10		ns
tl	LE 建立时间	10		ns
tp	LE 最小脉冲宽度	30		ns

表 7 串行寄存器配置表

寄存器位	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
串行控制字	D7 ¹⁾	D6	D5	D4	D3	D2	D1	D0
说明	MSB 最后输入	-	-	-	-	-	-	LSB 最先输入

备注: 1) D7 位控制字始终保持在低电平状态

Pre_v0.2_Doc20230103 5

表7简要介绍了串行移位寄存器的编程。Q7-Q0表示寄存器位,对应于衰减控制字D7-D0。 衰减控制字的值直接由衰减态而来,可将衰减态值乘以4,然后转换成二进制数,例如当衰减 态为8.5dB时,串口输入为00100010。

7F 0		7~117						3- 3- 1
D7	D6	D5	D4	D3	D2	D1	D0	衰减态
0	0	0	0	0	0	0	0	参考态
0	0	0	0	0	0	0	1	0.25dB
0	0	0	0	0	0	1	0	0.5dB
0	0	0	0	0	1	0	0	1dB
0	0	0	0	1	0	0	0	2dB
0	0	0	1	0	0	0	0	4dB
0	0	1	0	0	0	0	0	× 8dB
0	1	0	0	0	0	0	0	16dB
0	1	1	1	1	1	1	160	31.75dB

表 8 串行控制字逻辑真值表

◆ 上电启动设置

上电启动时, 串行模式或锁存并行模式下, ARW637 的衰减态初始化至最大值(31.75dB), 并且维持此状态直至用户写入新的控制字。

在直接并行模式下,由外部并行控制口端口直接控制内部衰减器的状态。在此状态下上电启动,数控衰减器从上电到达到外部控制的衰减态之间约有 400μs 的延时。在此延时阶段,数控衰减器会维持在衰减最大值 31.75dB。

待上电启动完成, ARW637 可实现串行和并行两种控制模式间的动态切换。

Pre_v0.2_Doc20230103 6

引脚说明 Pin Configuration and Function Descriptions

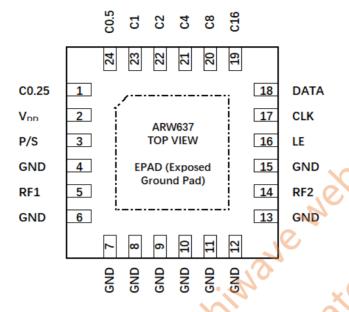
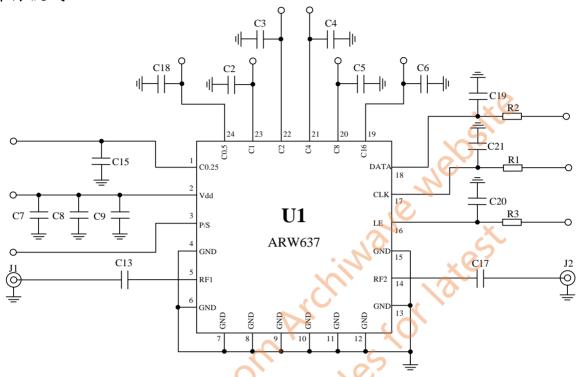


图 4 引脚说明


表 9 引脚功能描述

序号	名称	功能描述	备注
1	C0.25	控制端口	并行衰减控制位, 0.25dB
2	$V_{ m DD}$	电源端口	电压范围详见表 2
3	P/S	控制端口	并行/串行模式选择
4,6,7,8,9,10, 11,12,13,15	GND	建议良好接地	建议良好接地
5	RF1	射频端口	RF 输入端口,外部无直流时无需加隔直电容
14	RF2	射频端口	RF 输出端口,外部无直流时无需加隔直电容
16	LE	控制端口	锁存使能输入
17	CLK	控制端口	串行接口时钟输入
18	DATA	控制端口	串行接口数据输入
19	C16	控制端口	并行衰减控制位,16dB
20	C8	控制端口	并行衰减控制位,8dB
21	C4	控制端口	并行衰减控制位,4dB
22	C2	控制端口	并行衰减控制位, 2dB
23	C1	控制端口	并行衰减控制位,1dB
24	C0.5	控制端口	并行衰减控制位, 0.5dB
EPAD	EPAD	背面接地焊盘	建议良好接地

应用电路 Application Circuits

◆ 并行模式

备注: 1) 芯片射频端口内部无隔直电容。若外部无直流,各射频管脚可不加 C13, C17; 若有直流,需要另外加隔直电容。

- 2) 并行模式时 P/S(Pin3)接低电平, DATA(Pin18)、CLK(Pin17)接地处理。
- 3) 直接并行模式时, LE(Pin16)接高电平; 锁存并行模式时, LE(Pin16)需要形成脉冲, 如图 2 所示。

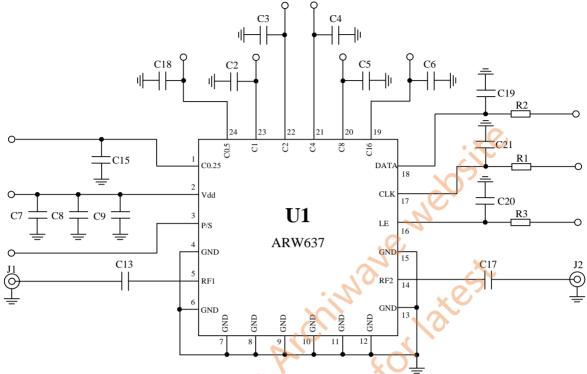

图 5 并行模式应用电路

表10 并行模式应用电路BOM表

位号	数值	描述	型号	厂家
-	-	印制板	B21051AV11	安其威
U1	-	9KHz~8000MHz 7位数控衰减器(DSA)	ARW637	安其威
C7	10μF	电源去耦	-	-
C8	0.1µF	电源去耦	-	-
C9	100pF	电源去耦	-	-
C13, C17	100pF	隔直	-	-
C2, C3, C4, C5, C6, C15, C18	100pF	滤波去耦	-	-
C20	100pF	滤波去耦	-	-
C19, C21	NC	-	-	-
R1, R2	NC	-	-	-
R3	Ω	-	_	_
J1, J2	-	SMA接头	-	-

◆ 串行模式

备注: 1) 芯片射频端口内部无隔直电容。若外部无直流,各射频管脚可不加 C13, C17; 若有直流,需要另外加隔直电容。

2) 串行模式时 P/S(Pin3)接高电平,并行位 C16~C0.25(Pin19、20、21、22、23、24、1)接地处理。

图 6 串行模式应用电路

表11 串行模式应用电路BOM表

位号	数值	描述	型号	厂家
-	-0	印制板	B21051AV11	安其威
U1	<u> </u>	9KHz~8000MHz 7位数控衰减器(DSA)	ARW637	安其威
C7	10μF	电源去耦	-	-
C8	0.1µF	电源去耦	-	-
C9	100pF	电源去耦	-	-
C13, C17	100pF	隔直	-	-
C2, C3, C4, C5, C6, C15, C18	NC	-	-	-
C20	100pF	滤波去耦	-	-
C19, C21	100pF	滤波去耦	-	-
R1, R2	0Ω	-	-	-
R3	0Ω	-	-	-
J1, J2	-	SMA接头	-	-

典型性能图 Typical Performance Characteristics 曲线来自评估板测试结果,除插损外其余指标没有去嵌,默认测试条件为: VDD=3.3V, 常温 25°C

20

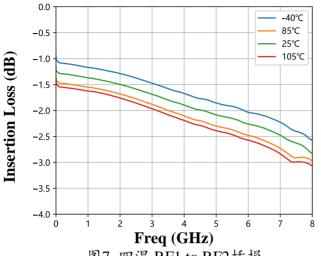
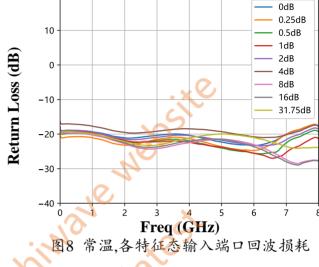



图7 四温,RF1 to RF2插损

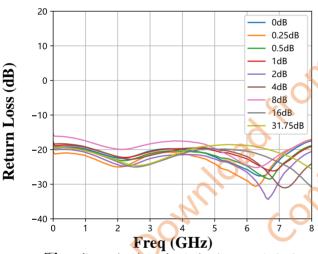


图9 常温.各特征态输出端口回波损耗

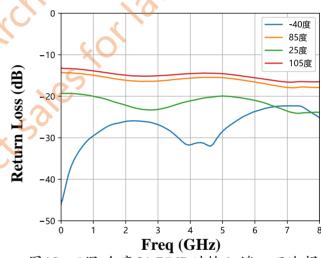
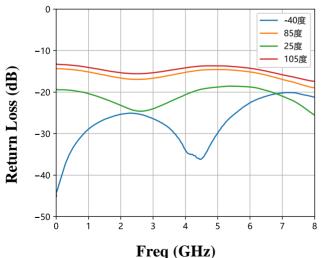


图10 四温,全衰31.75dB时输入端口回波损耗



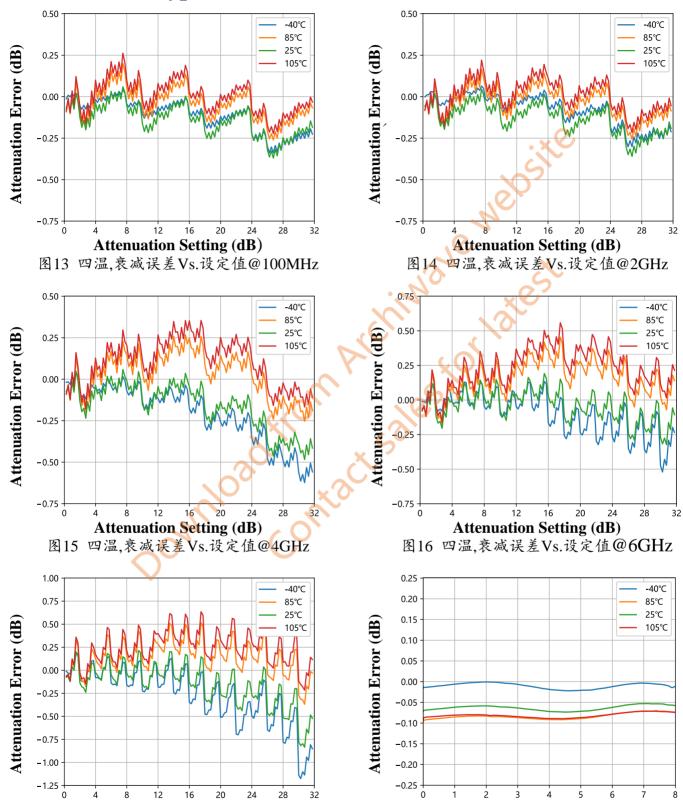
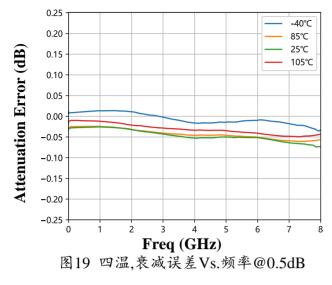

图11 四温,全衰31.75dB时输出端口回波损 耗

图12 四温,衰减误差Vs.设定值@9KHz

Typical Performance Characteristics (续 1) 典型性能图


Attenuation Setting (dB) Freq (GHz) 图18 四温,衰减误差Vs.频率@0.25dB 图17 四温,衰减误差Vs.设定值@8GHz

Pre_v0.2_Doc20230103 11

28

典型性能图 Typical Performance Characteristics (续 2)

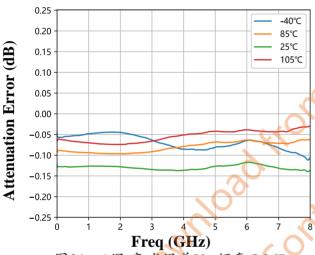
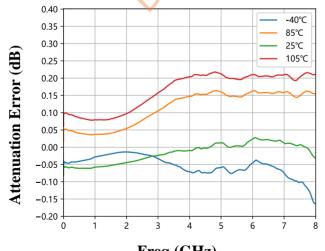



图21 四温,衰减误差Vs.频率@2dB

Freq (GHz) 图23 四温,衰减误差Vs.频率@8dB

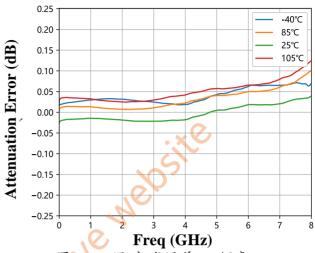


图20 四温,衰减误差Vs.频率@1dB

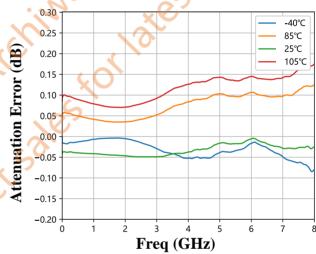


图22 四温,衰减误差Vs.频率@4dB

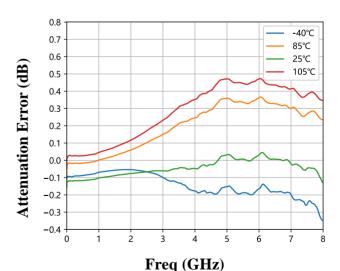


图24 四温,衰减误差Vs.频率@16dB

典型性能图 Typical Performance Characteristics (续 3)

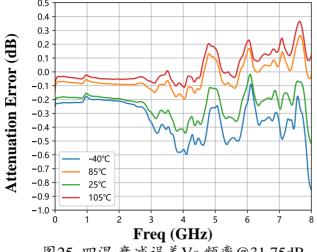


图25 四温,衰减误差Vs.频率@31.75dB

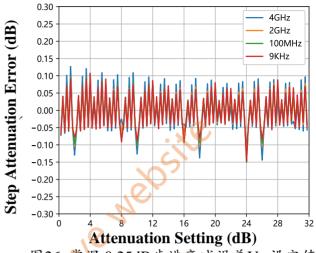


图26 常温,0.25dB步进衰减误差Vs.设定值

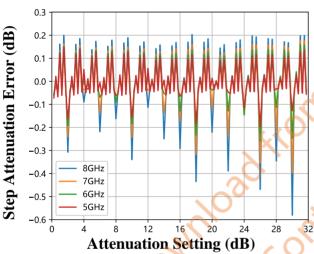


图27 常温,0.25dB步进衰减误差Vs.设定值

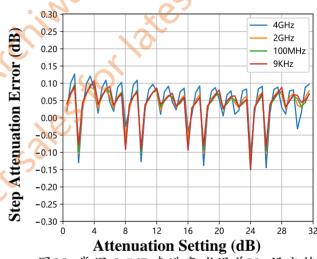


图28 常温,0.5dB步进衰减误差Vs.设定值

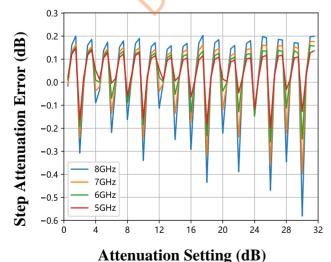


图29 常温,0.5dB步进衰减误差Vs.设定值

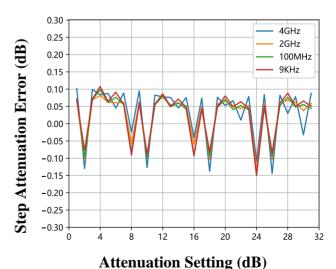


图30 常温,1dB步进衰减误差Vs.设定值

典型性能图 Typical Performance Characteristics (续 4)

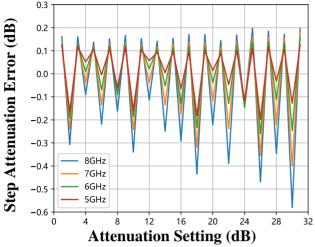
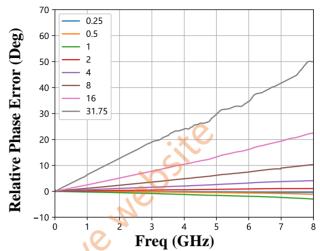
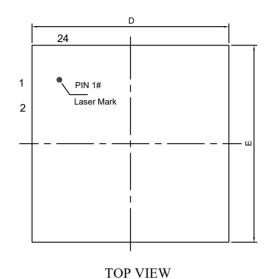
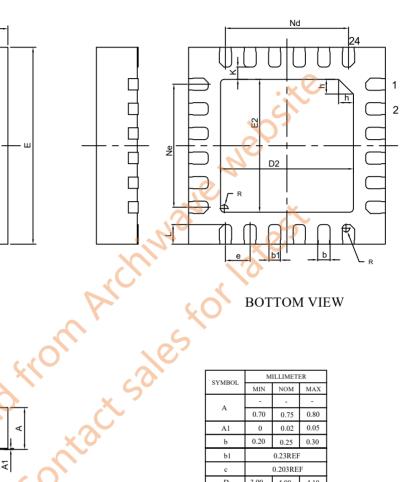
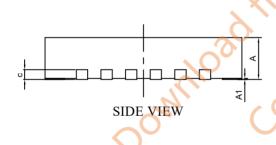



图31 常温,1dB步进衰减误差Vs.设定值




常温,各特征态衰减附加相移Vs.频率

Onnhoad from Archime For la



封装外形 Package Outline

BOTTOM VIEW

特殊设计: D2和 E2尺寸的公差是±0.05; 引脚根部切断位置较宽。

SYMBOL	MILLIMETER				
SIMBOL	MIN	NOM	MAX		
	-	-			
A	0.70	0.75	0.80		
Al	0	0.02	0.05		
b	0.20	0.25	0.30		
bl		0.23REF	ì		
c		0.203RE	F		
D	3.90	4.00	4.10		
D2	2.65	2.70	2.75		
e	0	.50BSC			
Nd	2	.50BSC			
Ne	2	.50BSC			
Е	3.90	4.00	4.10		
E2	2.65	2.70	2.75		
L	0.35	0.40	0.45		
h	0.25	0.30	0.35		
K	0.25REF				
R		0.075RE	F		

图 33 封装信息图

器件标识 Top Markings

订购信息 Ordering Information

订购码	封装	包装	MSL 等级	说明
ARW637	塑封	13 寸, 3000pcs/Reel	1	

版本修订记录 Revision History

版本*	日期	说明			
Pre_v0.1	2021-09-22	ARW637 预发布版本			
Pre_v0.2	2022-02-23	更新封装外形、器件标识及包装信息			
Pre_v0.2	2022-03-24	更新器件标识描述			
Pre_v0.2	2022-09-13	增加芯片工作寿命描述			
Pre_v0.2	2022-10-10	更新应用电路描述			
Pre_v0.2	2023-01-03	器件规格书格式更新			
		10			
Note: *PC、ES、Pre 阶段,产品规格书更新不另作通知。					